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Abstract: The total energies of a series of molecules, as calculated by Snyder and Basch from ab initio wave functions, are 
analyzed using linear models. In the most accurate of these the energies are reproduced to better than 0.006 hartree. The 
equations also predict hydrogenation energies in reasonable agreement with experiment. The analysis demonstrates that the 
concepts of an atom bound in a molecule, heteropolar bond energy, and electronegativity may still be useful in this quantum 
context and shows their relation to earlier concepts. The value for this type of analysis of calculations on a series of molecules 
using consistent approximations is stressed. 

In a recent book Snyder and Basch3 have published ex­
tensive tables giving the results of ab initio quantum calcu­
lations on a wide variety of molecules. Since the calcula­
tions use a uniform set of approximations they open up op­
portunities of comparing molecules and of analyzing their 
properties to an extent hitherto impossible. It is highly de­
sirable that these comparisons should isolate the effect of 
the approximations and concentrate on quantities where 
they may be expected to cancel. 

The Snyder-Basch tables, in particular, list the total 
energies of molecules as calculated in the Hartree-Fock ap­
proximation to double f accuracy. The atomic orbitals used 
for the various atoms are represented by Gaussian functions 
in a standard way and the calculations are performed in a 
uniform manner. The results should therefore be strictly 
comparable. For closed shell molecules the neglect of rela-
tivistic corrections and of electron correlation will produce 
systematic energy differences, but these are likely to remain 
constant for a particular atom irrespective of the molecule. 
These total molecular energies are not often observable ex­
perimentally though they can frequently be deduced indi­
rectly. Differences between these energies are much more 
observable as heats of reaction and it is these which will be 
of greatest interest. 

This paper reports an analysis of total energies by using a 
set of linear models. These models evolve as the analysis 
proceeds and the energies are explained to greater precision. 
The form of the models is not prescribed by any quantum 
mechanical assumptions. It turns out, however, that they 
lead to interpretations in terms of concepts more familiar in 
traditional thermochemistry. Thus bond energies are calcu­
lated and related to an electronegativity scale which com­
pares well with existing scales. 

The major tool used in this paper to establish the models 
has been multiple regression. The details of this procedure 
and of the statistical tests which govern it have been given 
by Ralston and WiIf.4 The program itself was the one im­
plemented as part of the biomedical package.5 

Atoms in Molecules 

The simplest model for the total energy of a molecule is 
that it is the sum of terms characteristic for each of its 
atoms. For this to be better than a rough approximation it is 
desirable that each time an atom occurs it should have a 
similar environment. This can be achieved by restricting the 
molecules to be considered in the first instance to those 
closed shell molecules in which the atoms occur with their 
normal valencies and the bonds have unstrained angles and 
normal lengths. 

The Snyder-Basch tables are restricted to molecules con­
taining the atoms H, B, C, N, O, and F. In practice there 
are so few containing B atoms that these had to be exclud­

ed. The molecules selected are those listed in Table I. The 
energy for each is expressed in the simple linear form. 

-W = hH + cC + nN + oO + fF (1) 

where h, c, . . . f are the numbers of these atoms in the mol­
ecule and H, C, . . . F are the atomic energies. Since the 
energies are all negative it is convenient to work with — W 
as a positive quantity. The values to be given to the atomic 
energies are determined by the multiple regression program 
which fits them to the list of calculated energies. These 
values, together with their standard errors, are given in 
Table II. As a standard of comparison the energies3 of the 
free atoms in their ground states are also given. 

The difference between the energy of an atom in a mole­
cule and a free atom may be called an atomic binding ener­
gy. By using these the relativistic and correlation errors, 
which are primarily located in the description of the inner 
electrons, may be canceled. These binding energies may be 
interpreted as heats of reaction. Thus, for example, the 
reaction '/2H2 -*• H has the heat 0.0867 hartree or 54.4 kcal 
mol - 1 . This brings the concept very close to that of the heat 
of atomization. There are some differences, however, since 
these energies take no account of temperature effects and so 
are at O0K. They are also all gas phase results for normal 
bonding so that, for example, solid graphite could not be 
taken as the standard for bound carbon. 

The molecular energies calculated using these values for 
the atomic energies are given in Table I. The residuals are 
of approximate magnitude 0.025 thus showing that the lin­
ear model of eq 1 successfully explains the major part of the 
variations. On the other hand a close inspection of the resid­
uals shows that there are some systematic trends which 
could be explained by a more detailed model. 

It is clear that this model is crude from a chemical point 
of view. Not only does it predict the same energy for all 
molecules that have the same chemical formula but it also 
predicts a zero heat of reaction for all reactions involving 
bound species. A model is needed that takes some account 
of how the atoms are related to one another in the molecule. 

Bond Energies 

The next simplest model that can be suggested in the 
light of the previous one is one in which the energy has con­
tributions depending on the various pairs of nearest neigh­
bors as well as the atomic terms. Such a model is not sound 
mathematically since, for example, the energy of H2 would 
be expressed as 2H + HH with two variables one of which, 
HH, would occur in this and no other molecule. Further­
more, the value of H can be changed by an arbitrary 
amount provided that HH and all the other combinations 
involving H are modified to keep the sums the same. This 
unsatisfactory feature of the model can be eliminated and 
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Table I. Total Molecular Energies Table III. Atomic Energies and Heteropolar Bond Energies 

Mole­
cules 
used 

CH4 
NH3 
H2O 
C2H2 
HCN 
C2H4 
H2CO 
C2H6 
N2H4 
H2O2 
CH3OH 
C3H4 
CH2CO 
NH2CN 
CH3CN 
CHONH2 
CHOOH 
C3H4O 
C3O2 
Ho 
HF 
F2 
CH3F 
^H2F2 
F2CO 
CHF3 
C2F4 
N2F2 
FNO 
CHOF 
N2H2 

S and B 
energy 

Eq 1 and 
Table II 

Eq 2 and 
Table III 

Eq 2 and 3 
and Tables 
III and V 

-40.1823 
-56.1714 
-76.0035 
-76.7919 
-92,8286 
-78,0054 

-113.8209 
-79.1981 

-111.1261 
-150.7373 
-115.0059 
-115.8203 
-151.6595 
-147.8437 
-131.8674 
-168.8685 
-188.6888 
-190.6899 
-263.1575 

-1.1266 
-100.0150 
-198.6932 
-139.0203 
-237.8687 
-311.5244 
-336.7157 
-473.3331 
-307.5104 
-228.5521 
-212.6841 
-109.9418 

-40.1879 
-56.1466 
-75.9882 
-76.8599 
-92.8186 
-78.0319 

-113.8321 
-79.2039 

-111.1211 
-150.8043 
-115.0041 
-115.8759 
-151 .6761 
-147.7931 
-131.8345 
-168.8067 
-188.6483 
-190.6921 
-263.1643 

- 1 . 1 7 2 0 
-99.9939 

-198.8159 
-139.0099 
-237.8318 
-311.4760 
-336.6538 
-473.3197 
-307.5930 
-228.6127 
-212.6541 
-109.9491 

-40.1886 
-56.1689 
-75.9981 
-76.8171 
-92.8477 
-78.0038 

-113.8537 
-79.1905 

-111.1371 
-150.7372 
-115.0202 
-115.8190 
-151.6689 
-147.8467 
-131.8496 
-168.8527 
-188.6853 
-190.6708 
-263.1492 

- 1 . 1 2 6 6 
-100.0150 
-198.6932 
-139.0247 
-237.8607 
-311.5258 
-336.6968 
-473.3480 
-307.5104 
-228.5521 
-212.6898 
-109.9473 

-40.1528 
-56.1954 
-76.0113 
-76.7992 
-92.8418 
-77.9680 

-113.8265 
-79.1368 

-111.1724 
-150.7505 
-114.9953 
-115.7832 
-151.6417 
-147.8684 
-131.8258 
-168.8531 
-188.6691 
-190.6257 
-263.1306 

-1.1266 
-100.0085 
-198.6932 
-138.9925 
-237.8322 
-311.5059 
-336.6718 
-473.3267 
-307.5340 
-228.5599 
-212.6662 
-109.9539 

Bound atom energies 
(standard error) N O 

H 
C 
N 
O 
F 

0.5633(0.001) 
37.8152(0.001) 
54.3678 (0.002) 
74.7392(0.003) 
99.3466(0.001) 

0.03-01 0.0371 
0.0238 

0.0661 
0.0563 
0.0288 

0.1051 
0.0828 
0.0408 

Table IV. Hydrogenation Energies (kcal/mol) 

Reaction 

Predicted 
from 

heteropolar -
energies Calcd Exptl 

-Ref 7-

CH3CH3 + H 2 - * 2CH4 -37.8 -23.5 
CH2CH2 + 2H2 -* 2CH4 -75.6 -65 .9 
CHCH + 3H2 -* 2CH4 -113.3 -117.8 
CH3NH2 + H2 — CH4 + NH3 -27 .2 -30.9 
CH2NH + 2H2 — CH4 + NH3 -54 .4 -72.1 
HCN + 3H2 -* CH4 + NH3 -81.6 -83.4 
CH3OH + H2 — CH4 + H2O -25.0 -32 .0 
CH2O + 2H2 — CH4 + H2O -50.0 -64 .3 
CH3F + H2 -* CH4 + HF -32.9 -27.4 
NH2NH2 + H2 — 2NH3 -46.6 -50.4 
NHNH + 2H2 — 2NH3 -93.1 -90.7 
N2 + 3 H 2 - 2NH3 -139.7 -47 .3 
NH2OH + H2-> NH5 + H2O -46.7 -62 .0 
HNO + 2H2 — NH3 + H2O -93.4 -114.2 
NH2F + H2 -* NH3 + HF -63.6 -71 .2 
HOOH+ H 2 - 2 H 2 O -83.0 -86.3 
O 2 + 2H 2 -2H 2 O -166.0 -107.1 
F 2 + H2-* 2HF -131.9 -118.9 

-18.1 
-57.2 

-105.4 
-25.7 

-76 .8 
-30 .3 
-57 .3 
-29 .5 
-50 .0 

-37.7 

-102.9 

-125.1 
-133.8 

Table II. Energies of Atoms in Molecules (hartrees) 

Energy of bound atom 
(standard error) Free atom 

Atomic binding 
energy 

H 
C 
N 
O 
F 

0.5860(0.005) 
37.8440(0.010) 
54.3886(0.011) 
74.8162(0.012) 
99.4079(0.008) 

0.4993 
37.6812 
54.3897 
74.7931 
99.3863 

0.0867 
0.1628 

-0.0011 
0.0231 
0.0216 

the comments made earlier interpreted more exactly by 
using a model in which only the heteropolar neighbors con­
tribute. The homopolar neighbors are taken to contribute to 
the atomic terms just as in the earlier model. Accordingly 
the energy relation is 

-W = hH + . . . + fF + xCH + . . . + 
<?HF + (2) 

where x is the number of carbon-hydrogen bonds in the 
molecule and CH is their energy contribution. Multiple 
bonds are counted in terms of the single bonds, e.g., C = N 
counts as 3CN. The atomic energies H, . . . , F have to be 
redetermined. 

The atomic energies and heteropolar energies that result 
from fitting (2) to the total molecular energies are listed in 
Table III. It is noteworthy that all the heteropolar energies 
are positive showing that these bonds are more stable than 
the arithmetic mean of the homopolar molecules. Thus a 
reaction such as 

H, 2HF 

will be predicted to be exothermic. The bound atomic ener­
gies are all lower than those in Table II and the atomic 
binding energies for O and F become negative as well as for 
N. This is an unchemical feature of the results and may be 
due to the fact that the Snyder-Basch wave functions are 

designed to produce a good energy for the free atom and not 
necessarily for the bound one. The standard errors of the 
various terms are much smaller than those in Table II so 
that the fitting represents a substantial improvement. This 
is also clear from the predicted energies which are given in 
Table I. The magnitude of the residuals is now about 0.006. 

The increased value of this model of molecular energies is 
shown not only in the superior fitting but in its predicted 
heats of reaction. In a reaction such as 

CH3CH3 + H 2 - 2CH4 

the atoms are balanced on both sides of the equation so that 
the atomic energies are the same. The heat of reaction is en­
tirely due to the heteropolar bond energies and would here 
be 2(CH). Table IV shows the hydrogenation energies for a 
series of molecules predicted in this way using the energies 
given in Table III. 

In a series of papers,6-7 Pople and his collaborators have 
reported calculations on a series of molecules somewhat 
similar to those of Snyder and Basch. The hydrogenations 
listed in Table IV are those used in one of their papers7 to 
illustrate the accuracy and utility of their calculations of 
total molecular energies, and we list their values and the ex­
perimental values which they quote. They have not ana­
lyzed the results in terms of heteropolar energies. For most 
molecules their energies lie above those of Snyder and 
Basch showing that they are further from the Hartree-Fock 
limit. The energy differences are approximately 0.04 for 
each C, 0.06 for N, 0.1 for O, and 0.12 for F. 

Traditionally, in thermochemistry molecular heats of for­
mation have been discussed in terms of bond energies. This 
is supported by quantum mechanical argument in which the 
total energy is allocated to atoms and bonds by using local­
ized orbitals.8 The analysis above in which the homopolar 
bond energies do not appear seems to be easier to apply and 
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Table V. Electronegativities 

H N O 

0.02113 0.04594 0.07282 0.09861 
Standard 

errors 
Adjusted 

Pauling 
Mulliken 

(2.1) 

2.1 
2.28 

0.006 

2.52 

2.50 
2.63 

0.006 

3.01 

3.07 
2.33 

0.006 

3.55 

3.50 
3.17 

0.006 

4.06 

4.10 
3.91 

better related to experiment. It is interesting to note that 
the approximation of treating heterobond energies as the 
arithmetic mean of homopolar energies was proposed by 
Pauling9 but later abandoned in favor of the geometric 
mean. 

Electronegativities 

The heteropolar energies listed in Table III exhibit some 
degree of regularity which invites further analysis. The 
values rise steadily away from the leading diagonal. This 
suggests a model which depends on differences in atomic 
contributions. In this model the heteroenergy AB is repre­
sented as 

AB (3) 

where A is the more electronegative atom. To fix the origin 
of the x variables it is convenient to set x H = 0. The het-
eroenergies were then all fitted to the values in Table III. 
The resulting values of these x a are shown in Table V. 
These values can be related to the customary electronega­
tivities by giving H the standard value 2.1 and making a 
scale adjustment to optimize the fit. 

Xa = 2.1 + * / 0 . 0 5 0 4 

The resulting electronegativities are given in Table V to­
gether with the Pauling6 values, as revised by Little and 
Jones,10 and the Mulliken values as revised by Pritchard 
and Skinner." The agreement is surprisingly good when the 
very different arguments used for the different scales are 
remembered. The Pauling scale, for example, is based on 
the excess of the heteropolar bond energy over the geomet­
ric mean of the homopolar energies and is then related to 
the square of the electronegativity differences. The present 
model manages to use purely linear relations. 

It is tempting to rationalize the success of this energy for­
mula in terms of molecular orbital concepts just as Pauling 
has rationalized his in terms of ionic-covalent resonance. 
The sum over atomic energies is obtained by forcing each 
localized bonding orbital to give equal weight to the two 
atoms. The correction to allow for its unequal distribution 
of charge will have the form 

5W = 
dW 9W 

6 S ^ 

where <5<?a is the charge gained by A and for conservation of 
charge8qh = -8qa 

5W = 5<7 
/3W _ dW\ 

(4) 

This partial derivative with respect to the charge is easily 
related to other definitions of electronegativity. Thus if the 
ionization potential / and electron affinity A for the same 
valence orbital in the atom are defined by 

/ = W(q - 1) - W(q) 

A = W{q) - W{q + 1) 

Table VI. Predicted and Calculated Molecular Energies 

Molecules with Predicted Difference 
3-membered rings Calcd by S-B from (2) kcal mol-1 

C3H4 
CH2N2 
C3H6 
C2H4NH 
CH2NHNH 
CF2N2 
C4H6 

Other molecules 
F-C-F 
O3 
CH3N=C 
C=O 
CO2 
CF4 
N2O4 
N2O 
N2 

115.7655 
147.7287 
117.0099 
132.9726 
148.8430 
345.3999 
154.7889 

236.6114 
224.1905 
131.8400 
112.6763 
187.5377 
435.5554 
407.8354 
183.5761 
108.8695 

115.8190 
147.7850 
117.0057 
133.0196 
148.9858 
345.4571 
154.8209 

236.6740 
224.2175 
131.8496 
112.6670 
187.5188 
435.5328 
407.8076 
183.5324 
108.7355 

33 
35 

- 2 
29, 
89. 
35. 
20 

39. 
16. 
6. 

- 5 . 
- 1 1 . 
- 1 4 . 
- 1 7 . 
- 2 7 . 
- 8 4 . 

W(q + x) = W(q) + x-

and if W is expanded in a Taylor expansion about the neu­
tral atom value 

'Bq 2 Tq1 

then the Mulliken definition of electronegativity is ob­
tained. 

QW/3q = - V 2 ( / + A) = -X 
The interpretation of the heterobond term in (2) using (4) 
would then be that hq has a similar value for all hetero-
bonds. 

Total Molecular Energies 

The initial purpose in setting up these models of the total 
molecular energy was to predict the total energies to good 
accuracy by means of a simple formula. Table I brings to­
gether the results that are obtained using the different 
equations for the original list of molecules. The closeness of 
the fitting can now be appreciated directly. In particular, 
the energy values in Table III with eq 2 give the best fitting 
and the replacement of the heterobond energies by the x a 

energies from Table V reduces the accuracy but not to the 
extent of the simple fitting which uses eq 1 and Table II. It 
is worth noting that these fittings produce very much small­
er deviations than are produced by comparing the total 
energies as computed by Radom, Hehre, and Pople7 with 
those of Snyder and Basch.3 

Not all of the molecules calculated by Snyder and Basch 
are included in TabJ.e I. It is of some interest to examine the 
calculated energies with those predicted by (2) for a num­
ber of other molecules. These are shown in Table VI and 
fall into two categories. The first is a group of molecules 
each containing a three-membered ring. The energy differ­
ences are similar for most of the molecules and can perhaps 
be interpreted as strain energy. The second group contains 
molecules such as C = O and O3 where the atoms show un­
usual valencies or molecules showing conjugation such as 
CO2 and N2O4. One molecule, N2, is much more stable 
than our formula predicts. This stability, together with that 
of O2, was already demonstrated in Table IV and may be 
due in part to a peculiarity of the basis functions. 

Conclusion 

It may be said that one achievement of this paper is the 
production of formulas which enable the total energies of 
many molecules to be predicted with much less effort than 
is required in an ab initio calculation. It certainly could be 
used to check such calculations. 
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In a more important way it has tried to show that linear 
models can be successfully applied to quantum mechanical 
results just as they are to empirical results. This greatly im­
proves the chemical utility of the results since the known er­
rors can be gradually eliminated and quantities produced 
which relate more directly to experimental measurements. 

The paper also demonstrates that, once a sufficiently 
consistent collection of results is available, quantum calcu­
lations are susceptible to chemical explanation and inter­
pretation. This appears to be a most fruitful starting point 
for the further investigation of many concepts that had 
seemed to disappear under the sheer mass of numbers pro­
duced by the computer. 
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Over the past several years a large nurr.ber of closed-shell 
molecular systems have been investigated by the ab initio 
molecular fragment procedure.7 This procedure, based on 
the Hall-Roothaan equations,3 has been found to be appli­
cable to a wide range of problems concerning small mole­
cules such as cumulenes4 and larger molecules such as ace­
tylcholine5 and glycine polypeptides/' The procedure is cur­
rently being extended to handle molecules containing sec­
ond-row atoms.8 Based on the success of the closed-shell 
studies, it seemed appropriate to e,xamine the suitability of 
the molecular fragment procedure for the study of open-
shell systems. An extension of the method to open-shell 
states of large molecules would provide another source of 
new chemical and spectroscopic information which would 
be quite useful in understanding the chemistry of various 
neutral and charged species as well as various excited 
states. The current paucity of information of this nature for 
large molecular systems underscores further the need for 
such techniques. 

The single determinantal unrestricted Hartree-Fock 
(UHF) model9 used in the current studies has already been 
applied using the molecular fragment procedure in a pre­
liminary investigation.10 This paper deals with the applica-
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tion of the molecular fragment procedure to an examination 
of the ground and excited states of formaldehyde and its 
cation and anion radicals (H2CO, H 2 CO + , H 2 C O - ) . In 
order to study the usefulness of this procedure, a number of 
molecular properties were calculated, such as transition 
energies, excited state geometries, barriers to inversion, mo­
lecular orbital (MO) orderings, charge distributions, dipole 
moments, and Hellmann-Feynman field strengths at the 
nuclei. A comparison of the computed values and the avail­
able experimental data for the wide range of properties list­
ed above provides valuable information concerning the suit­
ability of the method for describing certain properties of 
open-shell systems and also suggests possible changes to the 
procedure which would improve the calculation of these 
properties. Since the UHF wave function is usually not an 
eigenfunction of the spin-squared operator (S2), the effect 
of annihilating the spin component of next higher multiplic­
ity on the various computed properties is also examined. 

I. Method and Analysis 

The basis set consists of normalized, nonorthogonal, 
floating spherical Gaussian orbitals (FSGO) defined as fol­
lows 
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Abstract: This paper describes the extension of th e ab initio molecular fragment procedure to open-shell systems using the 
unrestricted Hartree-Fock (UHF) approach. A method of obtaining initial charge density and bond order matrices is also 
presented. Calculations are performed for the 3Ai(GS), ''3A2(n -» ir*) and 3Ai(X ~* TT*) states of formaldehyde, for the 
2Bi (GS) and 2B2(n -*• w*) states of the anion, arid for the 2B2(GS) and 2B2(Tr - • n) states of the cation. A number of proper­
ties of these states are presented and analyzed., including the dependence of the total energy on the out-of-plane bending 
angle, Franck-Condon transitions, molecular orbital structure, and several other molecular properties. Except for the 3Ai(Tr 
-* 7T*) state, where a very shallow potential curve makes definitive conclusions difficult, the geometric predictions are excel­
lent, with predicted equilibrium angles within a few per cent of other calculated or measured values. For all states examined, 
where comparisons were possible, the correct ordering of states was obtained. For cases where quantitative agreement was 
not obtained, analysis of the charge distribution and other properties allows assessment of the basis set adequacies and defi­
ciencies and indicates how improvements can be made. 
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